Preliminary Drainage Analysis for LOS PORTALES PROJECT AT APN 031-351-10

City of Santa Barbara, California

February 2007

SUBMITTAL TO:

City of Santa Barbara

CLIENT:

Bermant Development Company

PREPARED BY:

Penfield & Smith

111 East Victoria Street

Santa Barbara, California 93101

(805) 963-9532

WORK ORDER NO .:

15783.04

PROJECT ENGINEER:

Wayne F. Fitch, P.E.

PURPOSE OF REPORT

The purpose of this report is to describe the existing and proposed site drainage conditions and estimate the amount of drainage runoff being transmitted through the project site for a 25-year storm event.

LOCATION

The Los Portales project is located at 535 E. Montecito Street on a 1.78-acre parcel at the northwesterly intersection of Calle Cesar Chavez and Montecito Streets in the City of Santa Barbara. The property is Assessor's Parcel Number (APN) 031-351-10.

EXISTING SITE CONDITION

The project site is a vacant lot with uncultivated ground. The majority of the site is sloped from the north towards the southwest. The remaining portion of the site slopes toward the northeast.

This site is within a Zone A 100-year flood plain in accordance with the Flood Insurance Rate Map (FIRM) dated September 30, 2005 (Map Number 06083C1391F) published by the Federal Emergency Management Agency (FEMA) (see Attachment A).

The Base Flood Elevation (BFE) for the site is 10.7, in accordance with the data provided by the City of Santa Barbara Floodplain Coordinator (see Attachment A).

In 2001, Penfield & Smith prepared the "Laguna Drainage System Design Study" for the City of Santa Barbara (see Attachment B). This study showed that the Laguna Channel Drainage System "collects runoff from over 1800 acres within the City of Santa Barbara." The drainage area is generally bounded by Garden Street to the west, Salsipuedes Street to the east and U.S. Highway 101 to the south. The Los Portales project site is located at the south end of the Laguna Channel Drainage System. As stated in the 2001 Drainage Study, since development within the drainage area began in the late 19th century with portions of the area only a few feet above high tide ocean level, flooding has occurred.

Figure 2 of the "Laguna Drainage System Design Study" shows the approximate water surface elevation at 9.0' during the 1995 flood event. The shaded area on Figure 2 shows that approximately half of the Los Portales project site was flooded during this event. The existing street elevation at the intersection of Calle Cesar Chavez and Montecito Streets is approximately 9.5'. During major storm events, similar to what

Penfield & Smith Page 1

occurred in 1995 and 1998, the Laguna Channel and the upstream existing storm drain system reaches its capacity and causes the subsequent streets to "serve as overflow channels."

PROPOSED SITE CONDITION

The proposed site development includes six multi-story buildings and garages with driveway aisles and landscaped paths between them. There are two (2) driveways along Calle Cesar Chavez to allow entry to the site. There is one driveway entrance from the adjacent westerly parking lot. The proposed lowest building finish floor elevation will be set at 11.37'. The proposed lowest front of garage finish grade elevation is 10.80'.

The project proposes to direct approximately half of the storm water runoff to Calle Cesar Chavez and the other half to Montecito Street. The runoff will be collected on site and be transmitted to the street via curb outlet drains. If these small drains become blocked or if the capacity is exceeded, runoff will pond and escape over the sidewalks and curbs to the street gutters, which are well below the building and garage finish floor elevations.

METHOD OF ANALYSIS

The drainage peak runoffs for the 25-year storm event were calculated for the sites' predevelopment and post-development conditions. The drainage analysis was prepared according to the current Santa Barbara County Flood Control Design Standards. The hydrology calculations used the Santa Barbara County Flood Control and Water Conservation District Rational-XL program. The XL program references the Rational Method (Q=ciA), in which "c" is the site runoff coefficient; "i" is the a rainfall intensity in inches per hour (in/hr); and "A" is the drainage area in acres.

RESULTS

In utilizing the Rational-XL program, the agricultural land use was used for the Pre-Development condition; while the commercial land use was used for Post-Development condition.

"c"-value for 25-year storm event:

For Pre-Development Site:

c = 0.68

For Post-Development Site:

c = 0.74

"i"-value for 25-year storm event: 3.18 in/hr

Pre-Development Condition (see Attachment C):

For 25-year runoff:

Northerly and easterly site area (flow to Calle Cesar Chavez): A=0.11 acre

$$Q=c^*i^*A$$
 $Q=(0.68)(3.18)(0.11) = 0.24 cfs$

• Majority of the site (flow to Montecito Street): A=1.67 acres

$$Q=c^*i^*A$$
 $Q=(0.68)(3.18)(1.67)=3.61$ cfs

Total site runoff: Q = 3.85 cfs (see Attachment C, Pre-development drainage map and Pre-development hydrology calculations)

Post-Development Conditions (flow to Montecito Street) (see Attachment D):

For 25-year runoff:

A=1.78 acres

$$Q=c^*i^*A$$
 $Q=(0.74)(3.18)(1.78) = 4.19 cfs$

Total site runoff: Q = 4.19 cfs (see Attachment D, Post-development drainage map and Post-development hydrology calculations)

The total difference of the 25-year storm runoff between the pre- and post-development conditions is 0.34 cfs. This represents a 0.03% (0.34/1,250 cfs) runoff increase for the entire Laguna Channel watershed, which is an insignificant increase (see Attachment B).

CONCLUSIONS

Storm water Quantity:

The increase in surface runoff for the site is 0.34 cfs which represents an increase of 0.03% to the entire Laguna Channel watershed. The Los Portales project site is located at the downstream end of the Laguna Channel Drainage System. During our analysis, we have reviewed the feasibility of constructing on-site detention to withhold the increased runoff, and concluded that detention devices will have no impact on the peak flow of the Laguna Channel Drainage System due to the existing local ponding that occurs upstream from U.S. Route 101. The flooding condition on and around the project site is caused by the inadequate ability of the downstream Laguna Channel Drainage system to conduct flows to the Pacific Ocean.

Penfield & Smith Page 4

ATTACHMENT A

- FLOOD INSURANCE RATE MAP (FIRM) FOR PROJECT SITE
 - CITY BASE FLOOD ELEVATION (BFE)
 DETERMINATION

City of Santa Barbara

MECEIVE M. MAR 0 3 2005

Community Development Department

www.cl.santa-barbara.ca.us

SANTA BARBARA CITY BASE FLOOD ELEVATION (BFE) DETERMINATION

Date: February 17, 2005

BLD 2004-03097

Site Address:

535 E Montecito

APN: 031-351-010

Director's Office Tel: 805.584.5502 Fax: 805.564.5505

Contact Person:

Detivet Peikert or Steve Appleton

Fax:

Telephone: (805) 963-8283

Bullding & Safety

Tel: 805.564.5485

401 E Carrillo Street Santa Barbara, Ca. 93101

(805) 963-8184

Fax: 805.564.5478

Housing & Redevelopment Tel: 805.564.5461 Fax: 805:564.5477

Planning

Tel: 805.564.5470 Fex: 805.897, 1904

830 Garden Street PQ Box 1990 Sente Berbara, CA 93102-1990

Flood Insurance Rate Map (FIRM) Data:

Community Number:

060335

FIRM Index date:

Dec 3, 1991

Panel Number & Suffix: 0005D

Panel date:

Dec 3, 1991

FIRM Zone(s): Structure #1: Panel revised date: Jan 15, 2004

BFE:

Commercial Mixed Use Residential Accessory 8.1 NGVD'29

10.7 NAVD'88

Other Structures:

Separate BFE(s) required for each structure

BFE:

XXX.X NGVD'29

88'DVAN XXXX

*Flood Insurance is required for any structure whose site is located in a Special Flood Hazard Area (SFHA). Flood insurance is not required for 'X' & shaded 'X' zones.

*Building Permits are required before any new work, addition, or remodeling of structures in a SFHA (City of Santa Barbara Municipal Code MC 22.24).

*Contact Building & Safety for special construction design criteria & or exemptions.

Chris Short, Floodplain Coordinator & Senior Plans Examiner 630 Garden Street

Santa Barbara, Ca. 93102

(805) 564-5551

Cc: Santa Barbara Flood Control

City floodplain file City street file

ATTACHMENT B

A PORTION OF THE "LAGUNA DRAINAGE SYSTEM DESIGN STUDY"

LAGUNA DRAINAGE SYSTEM DESIGN STUDY

December 2001

CLIENT:

City of Santa Barbara Public Works Department

PREPARED BY:

Penfield & Smith

101 East Victoria Street

Santa Barbara, California 93101

(805) 963-9532

WORK ORDER NO .:

13868.01

PROJECT MANAGER:

Ronald N. Sickafoose, P.E.

EXECUTIVE SUMMARY

The Laguna Drainage System collects runoff from over 1800 acres within the City of Santa Barbara. The area in the vicinity of Gutierrez Street, Laguna Street and Calle Cesar Chavez is a historic estuary and portions of this area are only a few feet above the ocean level at high tide. Major storm events during the last 10 years have demonstrated that the system of storm drains, open channel, pumps and ocean release gates is unable to provide the level of flood protection desired by the City.

A variety of improvement options were analyzed as part of this study in an effort to increase the flow capacity of the drainage system and increase the reliability of the Laguna Pump Station Facility. The recommended improvement projects as summarized below accomplish the stated goals. One of the conclusions of the analysis work is that reduction of flood risk to a frequency of 10 years of greater cannot be accomplished with expanded facilities at the Laguna Pump Station. The limited flow capacity of the Laguna Channel and culverts under Highway 101 preclude achieving the desired protection in the area where historical flooding has occurred. It is therefore important that the approved channel maintenance program permitted by the California Department of Fish and Game continue to be a priority.

As an addendum to the original scope of this study, P&S performed a preliminary assessment of the existing storm drains in the Gutierrez Street and Laguna Street area. The problems that were identified include the following:

- Large flows running down Laguna Street and other streets that bypass existing catch basins.
- Inadequate inlet capacity at the low point of the watershed.
- Inadequate storm drain capacity in Gutierrez Street.
- Debris clogging of inlets.

Several potential storm drain improvements were identified, including adding catch basins and increasing the size of the collector drains to facilitate delivery of overflow runoff into the major drainage system. The recommended storm drain improvements would be constructed as stand alone project(s) under the City's Capital Improvement Program.

The following list of projects is recommended to be accomplished as funding becomes available. The projects may be combined and phased as necessary. The preliminary budget amounts include costs for construction, design, administration and contingency. Improved flow capacity and system reliability would be provide by upgrading the pumps and storm drain system. The remaining projects would facilitate improved operation and maintenance of the pump station facility and thus improve the efficiency and reliability of flow to the ocean.

DRAINAGE SYSTEM HISTORY

A significant portion of the drainage area overlays an old estuary referred to as El Estero on the 1870 Coast Survey Map shown below. Flooding has occurred in the lower part of the community since development began in the later part of the 19th century. Portions of this area are only a few feet above the ocean level at high tide and effective drainage control is difficult.

Historic Estero Location Map

SYSTEM DESCRIPTION

The Laguna Drainage System includes the following major components:

- Storm Drain System North of Highway 101
- Highway 101 Culverts
- Laguna Channel
- Pump Facility
- Tide Gate Facility

Storm Drain System

The storm drain system for the area north of Highway 101 evolved during the last 100 years as the City developed. The primary confluence of the storm drain system is located within Laguna Street between Gutierrez Street and Highway 101. A single 10 ft by 5 ft. box culvert and a double 62 in. by 54 in. box culvert convey storm water to the upstream side of the Highway 101 Culverts at the south end of Laguna Street.

It is typical in such systems to have a mixed level of performance and it is expected that some of the older drain lines and inlets are undersized based on today's conditions and design standards.

During major storm events such as those in 1995, the storm drain system reaches capacity and the local streets serve as overflow channels. Water collects in the historical flood area as shown on Figure 2. To avoid flooding, the local drains must be adequate to receive the overflow water and the downstream facilities must be adequate to convey it once it is received. History shows that this lower part of the system is inadequate at times and therefore, this area is the focus of this report. Figure 3 on the next page shows the major drainage facilities within the study area.

Highway 101 Culverts

The storm drain system north of Highway 101 discharges into several culverts at the highway. The culvert system was upgraded as part of the Cross Town Freeway Project in 1990 and 1991 and includes the following major facilities:

Laguna Street:

Two 10 ft. wide by 6 ft. high culverts

Montecito Street:

One 10 ft. wide by 5 ft. high culvert

Olive Street:

Two 24-inch diameter culverts

Calle Cesar Chavez:

Two 24-inch diameter culverts One 42-inch diameter culvert

NOTES

- 1. PLANIMETRY SHOWN FROM TOPOGRAPHIC MAP OF THE CITY OF SANTA BARBARA PREPARED FOR THE CITY OF SANTA BARBARA PUBLIC WORKS DEPARTMENT BY TOWILL, INC. DATED APRIL 10, 1995.
- 2. 1995 FLOOD EVENT LIMIT FROM LOWER MISSION CREEK FLOOD CONTROL FEASIBILITY STUDY, US ARMY CORP OF ENGINEERS, DECEMBER 1999.

FLOODING AREAS LAGUNA DRAINAGE SYSTEM DESIGN STUDY

CITY OF SANTA BARBARA

FIGURE 2

13868.01 FIG 2.DWG

2.DWG

1"=400'

HYDROLOGY AND HYDRAULICS

Several studies have been prepared in recent years to analyze the hydrology and flood hazards within the Laguna Channel Drainage System. The data generated in the past provided estimates for steady state flow rates for various return periods. In addition, the limits of flooding during the 1995 events were mapped. It is important to note that storm events with intensities that exceed the 10 year return period are likely to have flood flows from Mission Creek entering the lower Laguna system. Such was the case in the Winter of 1995. The proposed Mission Creek improvements currently under review will hopefully minimize the reoccurrence of this flooding scenario.

A summary of the previous studies reviewed and the estimated runoff flow rates is presented below:

Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Source
Cfs	_cfs :	Cfs	of cfs of the cfs	
	880	See Note	1,800	Draft Lower Mission Creek Flood Control
		Below		Feasibility Study, December 1999; US Army
I				Corps of Engineers. Neglects diversion
				capacity of various area storm drains.
	1,250		-	Cabrillo Bridge Replacement, Hydraulic
			1	Analysis Addendum, May 1996; Penfield &
			-	Smith
410	1,250		1	Laguna Channel Analysis, April 1996, Penfield
	***			& Smith. Capacity of storm water pumps
				determined to be 100 cfs each for a total of
	1			200 cfs maximum pumping rate.
	000			
410	£ 1,250 ,	1,960	2,190	Bridge No. 367.83, Santa Barbara; Hydrology
	ww	0298		and Hydraulics Report, HDR Engineering, Inc.,
4				September 1999 for UPRR.

Table 1 - Summary of Hydrologic Data

Notes:

In 1997, P&S evaluated the capacity of the pumps and tide gates for various water surface elevation scenarios for channel and beach pond. Based on observations by P&S staff during a range of storm conditions, the elevation of the beach pond typically ranges between 5 feet and 8 feet (NAVD 88). The pumps are usually capable of maintaining the water surface elevation in the channel well below the beach pond water surface elevation. When the channel flow rate exceeds the 200 cfs capacity of the pump station, the water surface elevation in the channel rises to flood stage. When the water surface elevation in the channel is higher than the beach

Penfield & Smith Page 19

^{1.} Based on typical relationships known to occur on the Santa Barbara South Coast, the Q_{50} was assumed to be about 80 percent of the Q_{100} .

ATTACHMENT C

HYDROLOGY CALCULATION FOR THE PRE-DEVELOPMENT CONDITION

ENGINEERS . SURVEYORS . PLANNERS

W.O. 15783.01 Pre-Post Drainage.dwg

DRAINAGE AREA MAP

CITY OF SANTA BARBARA STATE OF CALIFORNIA

SCALE: 1" = 50'

12/4/06

Santa Barbara County Flood Control and Water Conservation District Program Rational - XL

User Data					
Project Name	Los Port	ales		15783.03	
Date of Run:	12/7/20	06		Run By:	wff
Notes:	Existing	Pre-Development	Condition for Los Portales	s Project (southwesterly	portion of site)
Input Data					
Location:	South	Coast	Land Use Ty	pe: Agriculture	\Sigma
Area (Acres):	1.67			centration (Min.):	12
Calculated Runi	noff Confficient	Q10:	Q25: Q5	50: Q100:	
User Selected R		0.62	0.68 0.	.72 0.74	Calculate
Coefficient (Opt	Augustic Control and				Cacuate
For Large	Lot Subdivi	sions (>10,0	00 sq. ft.):		
Q10: Lo	w Value:	High Value:	User Selected:		
Q25:					
Q50:			And the second s	Enter Selection	
Q100:			The state of the s		
Results:	la Call Tabaaalka	D# C6			
010	infall Intensity:	Runoff Coef:	Q (cfs):		
025.	3.18	0.68	A 3.61	View RI Curves	Print
050.	3.68	0.72	10/449		
0100	4.03	0.74	\$4.98	View RC Curves	Exit
			7.10		

Santa Barbara County Flood Control and Water Conservation District Program Rational - XL

User Data:					
Project Name:	Los Portales			15783.03	
Date of Run:	12/7/2006		F	Run By:	wff
Notes:	Existing Pr	e-Development	Condition for Los Portales F	Project (northeasterly	portion of site)
Input Data:					
Location:	South Co	ast	Land Use Type	: Agriculture	Y
Area (Acres):	0.11			ntration (Min.):	12
		Q10: 0.62	Q25: Q50 0.68 0.7	Q100:	
User Selected Runo Coefficient (Optional	A CONTRACTOR OF STREET SHOULD				Calculate
For Large Lot	t Subdivisi	ons (>10,00	00 sq. ft.):		
Q10: Low Va	alue:	High Value:	User Selected:		
Q25:					
Q50:			A CONTROL OF THE PROPERTY OF T	Enter Selection	
Q100:			A construction of the cons		
Results:					
Q10: Rainfal	Intensity:	Runoff Coef:	Q (cfs):		
Q25: 3.18		0.68	9 0.24	View RI Curves	Print
Q50: 3.68		0.72	00.29		
Q100: 4.03		0.74	NO.33	View RC Curves	Exit

ATTACHMENT D

HYDROLOGY CALCULATION FOR THE POST-DEVELOPMENT CONDITION

Santa Barbara County Flood Control and Water Conservation District Program Rational - XL

User Data					
Project Nam	e: Los Portal	es	相相對於其一	Project Number:	15783.04
Date of Run:	12/4/2006	5		Run By:	wff
Notes:	Post-deve	lopment condition	ons for Condo units		
Input Dat	areacie				
Location:	South Co	oast	Land Use Ty	ne: Condo - Apartme	nts
Area (Acres):	1.78			centration (Min.):	12
	CONTRACTOR OF THE PARTY OF THE	Q10: 0.70	Q25: Q5		Calculate
A TAN THE PROPERTY OF THE PARTY	Lot Subdivis	ons (>10,00	00 sq. ft.):		
Q10:	ow Value:	High Value:	User Selected:		
Q25: Q50:		Service Statement Statement		Enter Selection	
Q100:					
Results:			2-2-2-2 MANAGEMENT STATES CONTINUES AND ADMINISTRATION OF THE PROPERTY OF THE		
AND DESCRIPTION OF THE PARTY OF	ainfall Intensity:	Runoff Coef:	Q (cfs):		
Q10:	2.61	0.70	X 3.25	View RI Curves	Print
Q25:	3.18	0.74	×4.19		Jan
Q50;	3.68	0.77	X5.04	View RC Curves	Evit
Q100:	4.03	0.79	夏5.67	view RC Curves	Exit

Drainage Ai	nalysis for	Los Port	ales Project
-------------	-------------	----------	--------------

SITE DETENTION ANALYSIS

PURPOSE OF REPORT

The purpose of this report is to address the concerns of the of the City of Santa Barbara for the Los Portales project regarding peak flow of runoff and overall volume of runoff from the project site compared to the pre-project condition.

BACKGROUND

In the DART review letter, City staff has indicated the need to implement the following requirements (regarding Santa Barbara City Storm Water Management Plan) at the project site:

- retain or treat the ΔQ₂₅ on site by the use of landscape features or holding tanks.
- provide volumetric or flow-based treatment control design per published standards.
- capture and treat the amount of runoff from the project site for a 1 inch storm event over 24 hours.

The applicant modified the project plans to incorporate stormwater treatment by use of on-site landscaped swales and catchbasin inserts. In a meeting with City staff to review the project changes, the applicant indicated that on-site detention or recharge would not be effective at this site due to overall, general inundation of the project region even during small rainfall events, very poor site soils which have very low recharge capabilities and have high liquefaction potential, and the inability to drain the site by gravity from an below-grade basin or tank. The City staff agreed that these conditions exist but that the project would need to make additional efforts to address the project requirements. They suggested the following ideas:

- For the soils required to be imported for raising the site and general earthwork, use more pervious soils than are currently on the site.
- Try capturing a reasonable amount of the storm flow in above-ground tanks and investigate below-ground tanks.

APPROACH

The applicant's team discussed the various approaches and were hesitant to make use of above-ground tanks due to the potential for saturation of building walls and soils. Therefore, Penfield & Smith began an investigation of an underground tank. Of necessity, the tank would need to be emptied via pump but could be designed such that if the pump failed, the overflow could be discharged from the property without harm to the residents.

The SB County-recommended approach to detention calculations was applied. This involved the HydroCAD software with County-dictated parameters to determine both flow rate and volume of runoff. The results of the analysis will necessarily differ from those figures provided in the previous calculations using the Rational Method. The following assumptions were made:

- A minimum time of concentration of 12 minutes was used for all calculations.
- A pre-project Curve Number of 94 representing Type D soils (very little infiltration) with open, fairly recently graded features.

- A post-project Curve Numbers ranging from 94 to 98 representing Type C soils (moderate infiltration) with development ranging from Urban Commercial (85% impervious) to Paved Parking Lots and Roofs.
- The use of a 5 ft diameter buried tank in which the length would be varied to accommodate the volume required.
- The use of a sump pump with a discharge rate of 5 gallons per minute. The pump would begin operating as soon as there is water in the tank. It would discharge to an inlet equipped with a stormwater filter.

The site was divided up into drainage watersheds as shown on the attached exhibit. The preproject and post-project peak flow rates and volumes were calculated. Then underground tank was introduced into the model and the length was varied to obtain the desired results.

RESULTS

Given this approach, the 5 ft diameter tank was varied in length. Using a length of 140 feet, the following results were determined, which provides for a peak post-project 25-year discharge of less than the pre-project 25-year discharge. It also reduces overall runoff volume during a 24-hour period significant and meters the remaining flow out over the period of 2 to 3 days.

Table 1summarizes the results for peak flow rates and Table 2 summarizes the results for volume of runoff.

Table 1 - 25-year Flow Rate Results

Watershed	Area	Pre-Project Flow Rate	Post-Project Flow Rate (without detention)	Post-Project Flow Rate (with detention)
	sf	cfs	cfs	cfs
Α	18,731	na	1.45	1.45
В	10,019	na	0.72	Combined with D and routed through tank
С	9,583	na	0.69	.69
D	13,939	na	1.08	1.63
E	13,068	na	1.01	1.01
F	6,534	na	0.47	.47
G	6,098	na	0.44	.44
Total	77,972	5.84	5.86	5.69

Table 2 - 25-Year Volume after 24 Hours

Watershed	Pre-Project Volume	Post-Project Volume (without detention)	Post-Project Volume (with detention)
	cf	cf	cf
Α	na	10,100	na
В	na	5,030	na
С	na	4,810	na
D	na	7,520	na
E	na	7,050	na
F	na	3,280	na
G	na	3,060	na
Total	38,990	40,850	32,550

^{*} Note that entire volume will be pumped out over 2 to 3 days

CONCLUSION

Since this solution:

- has reduced the post-project peak 25-year flow rate to less than and pre-project 25-year peak flow rate and
- has reduced the post-project 25-year storm volume to less than the pre-project during the 24-hour storm period and
- has proposed to treat storm water from 98 percent of the site area either by vegetative filtration or catchbasin filter inserts,

It appears to meet the City criterion for Santa Barbara Storm Water Management Plan.

Existing Site

Post-Project Discharge

Page 2 2/22/2007

Area Listing (all nodes)

Area (sq-ft)	<u>CN</u>	Description (subcats)
77,972	94	Newly graded area, HSG D (1S)
32,234	94	Urban commercial, 85% imp, HSG C (4S,5S,8S,9S)
27,007	98	Paved parking & roofs (6S,7S)
18,731	98	Paved roads w/curbs & sewers (2S)
8 50 - 3 - 3 - 3 - 3		
155,945		

Prepared by Penfield & Smith
HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

Page 3 2/22/2007

212

Time span=0.00-48.00 hrs, dt=0.05 hrs, 961 points
Runoff by SBUH method, Split Pervious/Imperv.

Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Existing Site

Runoff Area=1.790 ac Runoff Depth=6.00"

Tc=12.0 min CN=94/0 Runoff=5.84 cfs 38,989 cf

Subcatchment 2S: AP

Runoff Area=18,731 sf Runoff Depth=6.47"

Tc=12.0 min CN=0/98 Runoff=1.45 cfs 10,101 cf

Subcatchment 4S: BP

Runoff Area=0.230 ac Runoff Depth=6.02"

Tc=12.0 min CN=71/98 Runoff=0.72 cfs 5,028 cf

Subcatchment 5S: CP

Runoff Area=0.220 ac Runoff Depth=6.02"

Tc=12.0 min CN=71/98 Runoff=0.69 cfs 4,810 cf

Subcatchment 6S: DP

Runoff Area=0.320 ac Runoff Depth=6.47"

Tc=12.0 min CN=0/98 Runoff=1.08 cfs 7.517 cf

Subcatchment 7S: EP

Runoff Area=0.300 ac Runoff Depth=6.47"

Tc=12.0 min CN=0/98 Runoff=1.01 cfs 7,047 cf

Subcatchment 8S: FP

Runoff Area=0.150 ac Runoff Depth=6.02"

Tc=12.0 min CN=71/98 Runoff=0.47 cfs 3,279 cf

Subcatchment 9S: GP

Runoff Area=0.140 ac Runoff Depth=6.02"

Tc=12.0 min CN=71/98 Runoff=0.44 cfs 3,061 cf

Total Runoff Area = 155,945 sf Runoff Volume = 79,832 cf Average Runoff Depth = 6.14" 53.10% Pervious Area = 82,808 sf 46.90% Impervious Area = 73,137 sf

Prepared by Penfield & Smith

Page 4

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

2/22/2007

Subcatchment 1S: Existing Site

Runoff

= 5.8

5.84 cfs @ 9.98 hrs, Volume=

38,989 cf, Depth= 6.00"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

Area	(ac)	CN	Desc	cription			
1.	790	94	New	ly graded a	area, HSG	D	
1.	790	94	Perv	ious Area			
Т	1	. I_	01	V-1:b	0	D	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
 12.0				1		Direct Entry,	

Subcatchment 2S: AP

Runoff

1.45 cfs @

9.98 hrs, Volume=

10,101 cf, Depth= 6.47"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

	Area (sf)	CN	Description						
· ·	18,731	98	98 Paved roads w/curbs & sewers						
	18,731	98	Impervious	Area					
_ (mi	Tc Length			Capacity (cfs)	Description				
12	.0				Direct Entry,				

Subcatchment 4S: BP

Runoff

0.72 cfs @

9.98 hrs, Volume=

5,028 cf, Depth= 6.02"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

Area	(ac)	CN	Desc	cription			
0	.230	94	Urba	ın commer	cial, 85% ir	imp, HSG C	-
	.034 .195	71 98		ious Area ervious Are	a		
Tc (min)	Lengi (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.0						Direct Entry,	

Prepared by Penfield & Smith

Page 5 2/22/2007

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

Subcatchment 5S: CP

Runoff

= 0.69 cfs @

9.98 hrs, Volume=

4,810 cf, Depth= 6.02"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

_	Area	(ac)	CN	Desc	cription			
2	0.	.220	94	Urba	an commer	cial, 85% ii	imp, HSG C	ź
		.033	71		ious Area			10
	U.	.187	98	impe	ervious Are	ea		
	Tc	Lengt	th	Slope	Velocity	Capacity	Description	
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)		
	12.0					-	Direct Entry.	ě.

Subcatchment 6S: DP

Runoff

1.08 cfs @

9.98 hrs, Volume=

7,517 cf, Depth= 6.47"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

Area	(ac)	CN Des	scription					
0	0.320 98		Paved parking & roofs					
0.	.320	98 Imp	ervious Are	эа				
Tc (min)	Length (feet)	0.83	Velocity (ft/sec)	Capacity (cfs)	Description			
12.0					Direct Entry,			

Subcatchment 7S: EP

Runoff

Area (ac)

CN

1.01 cfs @

Description

9.98 hrs, Volume=

7,047 cf, Depth= 6.47"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

- 1.10u	140/	011		ription		
0.	0.300 98		Pave	ed parking	& roofs	
0.	.300	98	Impe	ervious Are	ea	
Tc (min)	Lengtl (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.0			-10-000			Direct Entry,

Prepared by Penfield & Smith

Page 6 2/22/2007

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

Subcatchment 8S: FP

Runoff

= 0.47 cfs @

9.98 hrs, Volume=

3,279 cf, Depth= 6.02"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

_	Area	(ac)	CN	Des	Description					
-	0.150 94		Urba	Urban commercial, 85% imp, HSG C						
		023 127	71 98		rious Area ervious Are	ea		(
_	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	12.0					-	Direct Entry.			

Subcatchment 9S: GP

Runoff

0.44 cfs @

9.98 hrs, Volume=

3,061 cf, Depth= 6.02"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-48.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

1	Area	(ac)	CN	Des	cription						
_	0.	0.140 94			Urban commercial, 85% imp, HSG C						
	0.	021	71	Perv	ious Area						
	0.	119	98	Impe	ervious Are	ea					
_	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	12.0						Direct Entry,				

Existing Site

Post-Project Discharge

Area Listing (all nodes)

Area (sq-ft)	<u>CN</u>	Description (subcats)
77,972	94	Newly graded area, HSG D (1S)
32,234	94	Urban commercial, 85% imp, HSG C (4S,5S,8S,9S)
27,007	98	Paved parking & roofs (6S,7S)
18,731	98	Paved roads w/curbs & sewers (2S)
1		
155,945		

Underground Storage

Type I 24-hr 25-yr SC Rainfall=6.71"

Prepared by Penfield & Smith

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

Page 3 2/22/2007

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Existing Site

Runoff Area=1.790 ac Runoff Depth>5.98"

Tc=12.0 min CN=94/0 Runoff=5.84 cfs 38,873 cf

Subcatchment 2S: AP

Runoff Area=18,731 sf Runoff Depth>6.45" Tc=12.0 min CN=0/98 Runoff=1.45 cfs 10,073 cf

Subcatchment 4S: BP

Runoff Area=0.230 ac Runoff Depth>6.01"

Tc=12.0 min CN=71/98 Runoff=0.72 cfs 5,014 cf

Subcatchment 5S: CP

Runoff Area=0.220 ac Runoff Depth>6.01"

Tc=12.0 min CN=71/98 Runoff=0.69 cfs 4,796 cf

Subcatchment 6S: DP

Runoff Area=0.320 ac Runoff Depth>6.45"

Tc=12.0 min CN=0/98 Runoff=1.08 cfs 7,496 cf

Subcatchment 7S: EP

Runoff Area=0.300 ac Runoff Depth>6.45"

Tc=12.0 min CN=0/98 Runoff=1.01 cfs 7,028 cf

Subcatchment 8S: FP

Runoff Area=0.150 ac Runoff Depth>6.01"

Tc=12.0 min CN=71/98 Runoff=0.47 cfs 3,270 cf

Subcatchment 9S: GP

Runoff Area=0.140 ac Runoff Depth>6.01"

Tc=12.0 min CN=71/98 Runoff=0.44 cfs 3,052 cf

Total Runoff Area = 155,945 sf Runoff Volume = 79,601 cf Average Runoff Depth = 6.13" 53.10% Pervious Area = 82,808 sf 46.90% Impervious Area = 73,137 sf

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

2/22/2007

Subcatchment 1S: Existing Site

Runoff

5.84 cfs @

9.98 hrs, Volume=

38,873 cf, Depth> 5.98"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

_	Area	(ac)	CN	Desc	cription				
_	1.	790	94	New	ly graded a	area, HSG	i D		
	1.790 94 Pervious Area								
		•							
	Tc	Lengi		Slope	Velocity	Capacity			
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)			
	12.0						Direct Entry,		

Subcatchment 2S: AP

Runoff

1.45 cfs @

9.98 hrs, Volume=

10,073 cf, Depth> 6.45"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

A	rea (sf)	CN [Description			
	18,731 98 Paved roads w/c 18,731 98 Impervious Area Tc Length Slope Velocity Cap				k sewers	
	18,731	98 I	mpervious	Area		
Tc (min)	_	C		Capacity (cfs)	Description	
12.0	·				Direct Entry,	

Subcatchment 4S: BP

Runoff

0.72 cfs @ 9.98 hrs, Volume=

5,014 cf, Depth> 6.01"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

Area	(ac)	CN	Desc	cription			
0	.230	94	Urba	ın commer	cial, 85% ir	imp, HSG C	
	.034 .195	71 98		ious Area ervious Are	ea		
Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.0						Direct Entry,	

Prepared by Penfield & Smith

Page 5

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

2/22/2007

Subcatchment 5S: CP

Runoff

= 0.6

0.69 cfs @ 9.98 hrs, Volume=

4,796 cf, Depth> 6.01"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

	Area (ac) CN Description									
0.220 94 Urban commercial, 85% imp, HSG C										
0.033 71 Pervious Area										
	0.187 98 Impervious Area									
	То	Lone	.11	Class	Mala altu.	0	D			
	Tc (min)	Leng (fee	10.00	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
37	12.0	1100		(1011)	(10000)	(013)	Direct Entry.			

Subcatchment 6S: DP

Runoff

1.08 cfs @

9.98 hrs, Volume=

7,496 cf, Depth> 6.45"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

Area	(ac)	CN Des	scription					
0	Area (ac) CN Description 0.320 98 Paved parking & roofs 0.320 98 Impervious Area Tc Length Slope Velocity Capacity Description (min) (fact) (fift) (fift) (filt)							
0	0.320 98 Impervious Area							
Te	l enath	Slone	Velocity	Capacity	Description			
(min)	(feet		(ft/sec)	(cfs)	Description			
12.0	111.5			10	Direct Entry,			

Subcatchment 7S: EP

Runoff

1.01 cfs @

9.98 hrs, Volume=

7,028 cf, Depth> 6.45"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

100	12.0			_			District.	
	(min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)		
	Tc	Length	Slo	pe	Velocity	Capacity	Description	
	0.	300	98 lı	mpe	rvious Are	ea		
	0.	300	98 F	Pave	d parking	& roofs		
-	Alea	(ac)						
	Area	(20) (JN L	1000	ription			

12.0

Direct Entry,

Underground Storage

Type I 24-hr 25-yr SC Rainfall=6.71"

Prepared by Penfield & Smith

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

Page 6 2/22/2007

Subcatchment 8S: FP

Runoff

=

0.47 cfs @

9.98 hrs, Volume=

3,270 cf, Depth> 6.01"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

_	Area	(ac)	CN	Des	cription							
884	0.	150	94	Urba	Urban commercial, 85% imp, HSG C							
		023 127	71 98	Perv	rious Area ervious Are							
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	12.0						Direct Entry.					

Subcatchment 9S: GP

Runoff

0.44 cfs @

9.98 hrs, Volume=

3,052 cf, Depth> 6.01"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type I 24-hr 25-yr SC Rainfall=6.71"

Area	(ac)	CN	Desc	cription			
0	.140	94	Urba	ın commer	cial, 85% ii	imp, HSG C	
	.021 .119	71 98		ious Area ervious Are			
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
12.0						Direct Entry,	

Underground Storage

Type I 24-hr 25-yr SC Rainfall=6.71"

Prepared by Penfield & Smith

Page 1

HydroCAD® 8.00 s/n 004468 © 2006 HydroCAD Software Solutions LLC

2/22/2007

Pond 10P: Post-Project Discharge

Inflow Area =

77,973 sf, Inflow Depth > 5.01"

for 25-yr SC event

Inflow

5.70 cfs @

9.98 hrs, Volume=

32.554 cf

Primary

5.70 cfs @

9.98 hrs. Volume=

32,554 cf, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Pond 11P: Underground tank

Inflow Area =

23,958 sf, Inflow Depth > 6.27"

for 25-yr SC event

Inflow

1.80 cfs @

9.98 hrs, Volume=

12,510 cf

Outflow = 1.63 cfs @

9.98 hrs, Volume=

4,337 cf, Atten= 10%, Lag= 0.0 min

Primary

1.63 cfs @

9.98 hrs, Volume=

4,337 cf

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs / 2

Peak Elev= 9.82' @ 9.98 hrs Surf.Area= 0 sf Storage= 2,749 cf

Plug-Flow detention time= 185.7 min calculated for 4,328 cf (35% of inflow)

Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Stor	age Storage Description
#1	0.00'	2,74	9 cf 60.0"D x 140.00'L Horizontal Cylinder S= 0.0050 '/'
Device	Routing	Invert	Outlet Devices
#1	Primary	0.00'	Pump
#2	Primary	9.70'	Elev. (feet) 0.00 0.01 9.70 Disch. (cfs) 0.000 0.010 0.010 15.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=1.54 cfs @ 9.98 hrs HW=9.82' (Free Discharge)

-1=Pump (Custom Controls 0.01 cfs)

-2=Broad-Crested Rectangular Weir (Weir Controls 1.53 cfs @ 0.86 fps)

Drainage Analysis for Los Portales Project	

STORM WATER QUALITY ANALYSIS

Stormwater Treatment at the Los Portales Project

Location:

583 E. Montecito Street

<u>Setting:</u> The project site is 1.78 acres. The proposed project will create approximately 1.42 acres (or 80% of the total site) of impervious surface including building, driveway and walkway, etc., and the remaining approximately 0.36 acre (or 20% of the total site) will be landscaped and open space area.

The proposed site stormwater treatment could be generally divided into the following 3 categories: Stormwater receiving surface treatment (i.e. swale and landscaping) is approximately 1.23 acres (or 69% of the total site); receiving mechanical treatment (i.e. catch basin insert) is approximately 0.51 acre (or 29% of the total site); and receiving no treatment is approximately 0.04 acre (or 2% of the total site).

Proposed storm water treatment Analysis (see enclosed calculations):

The analysis first calculates the required stormwater treatment quantity by referencing the Ventura County Technical Guidance Manual for Stormwater Quality Control Measures (it is normally a more conservative analysis), and California Stormwater Quality Association Stormwater Best Management Practice Handbook (for rainfall intensity at 85%). It resulted in 0.5 cubic feet per second (cfs) and 0.15 cfs required treatment runoff respectively. This analysis used 0.5 cfs for required stormwater treatment quantity.

There are 2 similarly sized vegetated swales plus several smaller landscape strips within the project site. This analysis calculated the contact time for one of the swales by using the 0.5 cfs of the required treatment flow. It resulted in 7.08 minutes of contact time, which is greater than the minimum required contact time of 7 minutes.

<u>Conclusion:</u> The proposed site development will provide sufficient stormwater treatment before discharging runoff off-site.

User Data:			Program Rat	ional - XL	-Amilia		
Date of Run: 277/2007 Run By: BTF/SCW	User Data:					And American Section 1975	
Notes: Input Data: Location: South Coast Land Use Type: Condo - Apartments	Project Name:	Montecito Street		Project Nu	mber:	15783.04	
Input Data:	Date of Run:	2/7/2007		Run By:		BTF/SCW	
Location: South Coast V	Notes:	and the second s					
Area (Acres): 1.78	Input Data:		711				
Calculated Runnoff Coefficient: 0.70 0.70 0.74 0.77 0.79 User Selected Runoff Coefficient: Coefficient (Optional): For Large Lot Subdivisions (>10,000 sq. ft.): Low Value: High Value: User Selected: Q10: Q25: Q50: Q10: Results: Rainfal Intensity: Runoff Coef: Q10: Q25: Q35: Q10: Results: Rainfal Intensity: Runoff Coef: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q25: Q10: Q10: Q25: Q10: Q25: Q10: Q10: Q10: Q25: Q10: Q10: Q10: Q25: Q10: Q10: Q10: Q25: Q10: Q10: Q10: Q10: Q10: Q10: Q10: Q10	Location:	South Coast	La La	nd Use Type: Condo	- Apartment	ts	
Calculated Runnoff Coefficient: 0.70 0.74 0.77 0.79 Calculated Runnoff Coefficient: 0.70 0.79	Area (Acres):	1.78		ne of Concentration (Mi	n.):	12	
User Selected Runoff Coefficient (Optional): For Large Lot Subdivisions (>10,000 sq. ft.): Low Value: High Value: User Selected: Q10: Low Value: High Value: User Selected: Q25: Q50: Enter Selection Q100: Results: Q10: 2.61 0.70 3 View RI Curves Print Q25: 3.18 0.74 4 View RC Curves Q25: 3.18 0.74 4 View RC Curves Q25: 3.18 0.77 5 View RC Curves EX ALCULATE TREATMENT Q. $O_{1} \times Q_{1} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	Calculated Runnoff			/			
For Large Lot Subdivisions (>10,000 sq. ft.): Come		J	0.74	0.77	0.79	Calculate	
Low Value: High Value: User Selected: Q10: Q25: Q50: Enter Selection Q100: Results: Q10: 2.61 Q.70 3 View RI Curves Q10: 2.61 Q.70 3 View RI Curves Q25: 3.18 Q.74 4 View RC Curves Q50: 3.68 V Q.77 5 View RC Curves EX PTH VENTURA COUNTY TECHNICAL GUIDANCE MANNAL FOR STORM WAR. FOR VENTURA COUNTY TECHNICAL GUIDANCE MANNAL FOR STORM WAR. FLOW BASED BMP PER CA. STORMWATER BMP HAND. Q=C.IA, $1=0.14$ MR, OXNARD EQUIPMENT VARD, CUMHOURLY RAWSALL INTENSITY AT 9.5% C= 0.858 1.8% Q.78 1.8% Q.714 1.8% Q.774 1.8% Q.775 1.8% Q.775 1.8% Q.775 1.8% Q.775 1.8% Q.775 1.8% Q.776 1.8% Q.776 1.8% Q.776 1.8% Q.777 1.8% Q.776 1.8% Q.777 1.8% Q.777 1.8% Q.777 1.8% Q.778 1.8% Q.779		TOTAL CONTRACTOR OF THE PARTY O			<u> </u>		
Q10: Q25: Q50: Q100: Enter Selection Q100: PRESUITS: Runoff Coef: Q(cfs): Q10: 2.61 Q.70 3 View RI Curves Pri Q25: 3.18 Q.74 4 View RI Curves Pri Q50: 3.68 V Q.77 5 View RC Curves EX Q100: 4.03 Q.79 6 Q.79 Q100: 4.03 Q.79 6 Q.79 Q100: 4.03 Q10				loctod		till and the second	
Q50: Q100: Results: Rainfall Intensity: Runoff Coef: Q10: Q10: Q10: Q10: Q10: Q10: Q10: Q10		raiue. Aigh vaiue.	User se	lected:			
Q50: Q100: Results: Q10: 2.61 Q.70 3 Vew RI Curves Pri Q50: 3.18 Q50: 3.68 V 0.77 5 Q100: 4.03 Q79 6 Vew RC Curves EX ALCULATE TREATMENT Q PER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM MA FLOW BASED BMP PER CA. STORMWATER BMP HAND Q=C.IA L=0.14 // OXNARD EQUIPMENT YARD, CUM HOURLY RAWFALL INTENSITY AT 85% C= 0.858 is - 0.78 is 2 + 0.774 is - = 0.858 (08) - 0.78 (0.8) + 0.774 = 0.44 - 0.50 + 0.62 + 0.04 = 0.60	Q25:						
Results: Rainfall Intensity: Runoff Coef: Q (cfs): Q10: 2.61 0.70 3 Q25: 3.18 0.74 4 Q50: 3.68 V 0.77 5 Q100: 4.03 0.79 6 ALCULATE TREATMENT Q PER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM WA FLOW BASED BMP PER CA. STORMWATER BMP HAND Q = C · I · A L = 0.14 MR, OXNARD EQUIPMENT YARD, CUM HOURLY RAWFALL INTENSITY AT 85% $C = 0.858 i R^3 - 0.78 i R^2 + 0.774 i R + 10.060$ $= 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$	Q50:			Enter S	Selection		
Rainfall Intensity: Runoff Coef: Q(cfs): Q10: 2.61 0.70 3 Q25: 3.18 0.74 4 Q50: 3.68 V 0.77 5 Q100: 4.03 0.79 6 WIEW RC CURVES EX ALCULATE TREATMENT Q PER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM WA FLOW BASEO BMP PER CA. STORMWATER BMP HAND, Q=C.IA, $\frac{1}{2}$ = 0.14 MR, OXNARD EQUIPMENT YARD, CUM HOURLY RAWFALL INTENSITY AT 85% C= 0.858 $\frac{1}{2}$ = 0.78 $\frac{1}{2}$ = 0.714 $\frac{1}{2}$ = 0.44 - 0.50 + 0.62 + 0.04 = 0.60	Q100:	in the second					
Q10: 2.61 0.70 3 Vew RI Curves Print Q25: 3.18 0.74 4 Q50: 3.68 V 0.77 5 View RC Curves EX ALCULATE TREATMENT Q. O, $ \times Q_{P50} = 0.1 C A = .1 (.77) (3.66) (1.76)$ FER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM WA FLOW BRSEO BMP PER CA. STORMWATER BMP HAND. Q=C. A, $\frac{1 = 0.14}{1000} \frac{1000}{1000} 10$	Results:	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1), (Annual)	1. M/V.	
Q25: 3.18 0.74 4 VIEW RI CURVES PRINT Q50: 3.68 V 0.77 5 VIEW RC CURVES EX Q100: 4.03 0.79 6 VIEW RC CURVES EX Q100: 4.03 0.79 6 VIEW RC CURVES EX Q100: 4.03 0.79 6 VIEW RC CURVES EX Q100: A	010						
Q50: 3.68 V 0.77 5 VIEW RC CUIVES EX ALCULATE TREATMENT Q. $O, I \times Q_{P50} = O_{o} I C IA = o I (0.77) (3.68) (1.78)$ PER VENTURA COUNTY TECHNICAL GUIDANCE MANNAL FOR STOPM MA FLOW BASEO BMP PER CA. STORMWATER BMP HAND, $Q = C \cdot IA$, $I = 0.14 \% P_{e}$, OXNARD EQUIPMENT VARD, CUM HOURLY RAWFALL INTENSITY AT 85% $C = 0.858 \text{ is}^{2} - 0.78 \text{ is}^{2} + 0.774 \text{ is} + 0.44 - 0.50 + 0.62 + 0.04 = 0.60$	025			View RI	I Curves	Print	
Q100: 4.03 0.79 6 VIEW RC CUIVES EX ALCULATE TREATMENT Q. O, $ \times Q_{P50} = 0$, $ C A = (0.77)(3.68)(1.78)$ PER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM WA FLOW BASED BMP PER CA. STORMWATER BMP HAND. Q=C. A $ L = 0.14 \text{ MR}$, OXNARD EQUIPMENT YARD, CUM HOURLY RAWFALL INTENSITY AT 85% C= 0.858 $ L L L L L L L L L $							
ALCULATE TREATMENT Q. $O, 1 \times Q_{P50} = 0.1 C1A = .1 (.77) (3.68) (1.78)$ FER VENTURA COUNTY TECHNICAL GUIDANCE MANDAL FOR STORM WA FLOW BASED BMP PER CA. STORMWATER BMP HAND, $Q = C.1A$, $\frac{1 = 0.14}{1000} \frac{1}{100} 1$				View RC	Curves	Exit	
0. $ \times Q_{P50} = 0.1 (1A = .1 (.77) (3.68) (1.78)$ FER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM WA LOW BASED BMP PER CA. STORMWATER BMP HAND Q=C.1A, $\frac{1=0.14}{1000} \frac{1000}{1000} 1$	4.0	0.79	16				
0. $ \times Q_{P50} = 0.1 (1A = .1 (.77) (3.68) (1.78)$ FER VENTURA COUNTY TECHNICAL GUIDANCE MANUAL FOR STORM WA LOW BASED BMP PER CA. STORMWATER BMP HAND Q=C.1A, $\frac{1=0.14}{1000} \frac{1000}{1000} 1$	11011117	TDF A-419 FF	0				
FLOW BASED BMP PER CA. STORMWATER BMP HAND, $Q = C \cdot 1 \cdot A$, $i = 0.14 \text{ MR}, O \times \text{NARD } \neq 0.1 \text{ PMENTI } \text{ VARD, } \text{ CUM}$ HOURLY RAWFALL INTENSITY AT 85% $C = 0.858 \text{ is}^3 - 0.78 \text{ is}^2 + 0.774 \text{ is} + 0.774 \text{ is} + 0.774 \text{ is} + 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$	ACCOUNTE	/Kerimen i	<u> </u>				
FLOW BASED BMP PER CA. STORMWATER BMP HAND, $Q = C \cdot 1 \cdot A$, $i = 0.14 \text{ MR}, O \times \text{NARD } \neq 0.1 \text{ PMENTI } \text{ VARD, } \text{ CUM}$ HOURLY RAWFALL INTENSITY AT 85% $C = 0.858 \text{ is}^3 - 0.78 \text{ is}^2 + 0.774 \text{ is} + 0.774 \text{ is} + 0.774 \text{ is} + 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$	0 1 0						(Gove
FLOW BASED BMP PER CA. STORMWATER BMP HAND, $Q = C \cdot 1 \cdot A$, $i = 0.14 \text{ MR}, O \times \text{NARD } \neq 0.1 \text{ PMENTI } \text{ VARD, } \text{ CUM}$ HOURLY RAWFALL INTENSITY AT 85% $C = 0.858 \text{ is}^3 - 0.78 \text{ is}^2 + 0.774 \text{ is} + 0.774 \text{ is} + 0.774 \text{ is} + 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$	U, 1 × Qp	50 = 0.1	CIA =	.1 (.77)	1369		
ERSED BMP PER CA. STORMWATER BMP HAND, $Q = C \cdot 1 \cdot A$, $\frac{1 = 0.14}{\text{MR}}, O \times \text{NARD} \neq Q \cup 1 \neq M \neq N \neq N$	PER VEX	YTURA COUNTY TE	CHNICAL GU	IDANCE MANUA	L From	TOPM WATER	2000
ERSED BMP PER CA. STORMWATER BMP HAND, $Q = C \cdot 1 \cdot A$, $\frac{1 = 0.14}{\text{MR}}, O \times \text{NARD} \neq Q \cup 1 \neq M \neq N \neq N$					- LIK 2	HOLM WHIER &	164211
$Q = C.1.A$, $\frac{1 = 0.14}{MR}, O \times MARD EQUIPMENTI VARD, CUM HOURLY RAWFALL INTENSITY AT 85% C = 0.858 is \frac{1}{10} = 0.78 is \frac{1}{10} = 0.78 is \frac{1}{10} = 0.78 (0.8) \frac{1}{10} = 0.44 = 0.50 + 0.62 + 0.04 = 0.60$	LOW BASE	O BMP					
Q=C.1.A; $i = 0.14 \text{ MR}, O \times NARD EQUIPMENT VARD, CUM HOURLY RAWFALL INTENSITY AT 85% C= 0.858 i \text{ R}^3 - 0.78 i \text{ R}^2 + 0.774 i \text{ R} + 0.858 \cdot (0.8)^2 + 0.774 i \text{ R} + 0.858 \cdot (0.8)^2 + 0.774 i \text{ R} + 0.44 - 0.50 + 0.62 + 0.04 = 0.60$			CA	· STORMWATER	2 BMF	HANDBOOK	-
HOURLY RAWFALL INTENSITY AT 85% $C = 0.858 \cdot 1.8^{3} - 0.78 \cdot 1.8^{2} + 0.774 \cdot 1.8 + 0.858 \cdot (0.8)^{3} - 0.78 \cdot (0.8)^{2} + 0.774 \cdot 1.8 + 0.44 - 0.50 + 0.62 + 0.04 = 0.60$	Q= C.1	· A . i -					
$C = 0.858 \cdot 1.8^{3} - 0.78 \cdot 1.8^{2} + 0.774 \cdot 1.8 + 0.858 \cdot (0.8)^{3} - 0.78 \cdot (0.8)^{2} + 0.774$ $= 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$			UNIT AIR, OX	HARD EQUIPM	ENTIVA	RD, CUMULA	TIVE
$= 0.838.(08)^{3} - 0.78 (0.8)^{2} + 0.774$ $= 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$, -	
$= 0.838.(08)^{3} - 0.78 (0.8)^{2} + 0.774$ $= 0.44 - 0.50 + 0.62 + 0.04$ $= 0.60$		C =	0.858 i	R3 - 0.78 202	+ 0.77	4iR +0.04	ir
= 0.44 - 0.50 + 0.62 + 0.04 $= 0.60$		_	0828.1	2013 - 20	5/0.0		,
= 0.60		_	אווא ב	00 - 0.78	0,6) +	0.714 (0.8)	+ 0.0 L
				VISU + 0.62	1 + 0.04	<i>†</i>	
10 - 10 - 11 - 14 - 14 - 1 - 1 - 1	Q = 1						
Q = (0.6)(0.14)(1.78) = 0.15cfs USE STANDARD SAFETY FALTOR OF 2 => Q=0.30cfs < 0.50 cfs (THE ABOVE VENTURA COUNT							

ONE OF THE SITE SWALE, DESIGN DATA.

Penfield & Smith	is .	30020-0				
Santa Barbara	•	Camarillo	•	Santa Maria	•	Lancaster
			Δ	150 01	1	
	1			1.78 AL 0.50 CFS		
E				0.20		The state of the second st
				0.005		
7		6	>		8	
17700					100	
		111				
	- 100 - 101					
	11 11 11 11 11 11 11 11 11 11 11 11 11					
FROM	OPEN CH	ANNEL FLOU	U ANAL	4515 :		
						100
d = 0	0.30 FT	= 3.6 IN	OK	(3 < d	45)	
V =	0.2 fps	<u>ok</u> (V C Z.	o fps)		
1 -	B5 6	T (LENG				
2 =	D 3 F	(LENG)	in of	suffe)		
CONTA	ALT TIME	= 85 4	2+	702 m	INJUTES >	> -> ,,
		= 854	- (ac)	7.00		(O.K.)
			100)			(U.K. J.

Technical Guidance Manual for Stormwater Quality Control Measures

July 2002

Ventura Countywide Stormwater Quality Management Program

Pollutant Removal

Relative pollutant removal effectiveness of a GSWF is presented in Table 5-1. Removal effectiveness of GSWF for sediment and particulate forms of metals, nutrients and other pollutants is considered moderate to low. Grass Swale Filters are the least effective of the approved treatment control measures. Consequently, they should generally be used in conjunction with one of the other approved treatment control measures.

Design Criteria and Procedure

Principal design criteria for GSWFs are listed in Table 5-4.

Table 5-4. Grass Swale Filter Design Criteria

Design Parameter	Unit	Design Criteria
Design Flow (SQDF)	cfs	$0.1 \times Q_{P, 50yr}$
Swale geometry	-	Trapezoidal or triangular
Maximum channel side slope	H:V	4 :1
Minimum slope in flow direction	%	0.2 (provide underdrains for slopes < 0.5)
Maximum slope in flow direction	%	2.0 (provide grade-control checks for slopes >2.0)
Maximum flow velocity	ft/sec	1.0 (based on Manning n = 0.20)
Maximum depth of flow at SQDF	inches	3 to 5 (1 inch below top of grass)
Minimum contact time	minutes ((provide sufficient length to yield min contact time)
Minimum length	ft	sufficient length to provide minimum contact time
Vegetation	_	Turf grass or approved equal
Grass height	Inches	4 to 6 (mow to maintain height)

California Stormwater Quality Association

Stormwater Best Management Practice

Handbook

New Development and Redevelopment

Industrial and Commercial

Municipal/

